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ABSTRACT

Necessary and sufficient conditions are given for the convergence
of mixed methods for the solution of elliptic differential equations.
Error bounds are given in the I? norm which show that full accuracy
can be obtained when all variables are approximated by piecewise poly-

nomial functions of the same degree.
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1. Introduction

It is easy to show that the functional
(1) J(u,0) = 3(0,0) + (Tu~-0,0) - (f,u)
assumes a stationary value whenever (u,0) satisfies the equations

Tu=0c in Q , bu=0 on 9%
(2)
T*0 =

where T 1s a linear map from the Hilbert space H1 to the Hilbert space

H2 , T* 1is its formal adjoint, and b 1is a boundary operator. Mixed
methods result from the application of Galerkin techniques to the solution
of (2), or equivalently to the first variation of (1). The purpose of this
note is to give necessary and sufficient conditions for the convergence

of mixed methods for the solution of elliptic equations. These results
extend and sharpen earlier results [7], [8], [9]. With mixed methods
several dependent variables are approximated simultaneously. We also give
error bounds which show that full accuracy can be obtained for all variables

being approximated. To make exposition easier we discuss our results using

the model second order elliptic equation

Vu=0¢g in Q ,
(3) -div g = £ in Q@ ,
u=20 on 9d§.

Our results can be immediately extended to general second order elliptic
equations and to the elliptic systems which arise in linear elasticity.
Our results can also be extended to higher order equations. The application

to fourth order equations does not directly eliminate the need to seek finite



. . . 1 . .
element approximations in C’. In order to be able to seek approximations
. 0 . . .
in C°, it seems necessary to use hybrid methods or to use a technique

like that used by Ciarlet and Raviart [5] which introduces an additional

variable into the calculatioms.

2. Main Results

We introduce the space
) HGdiv; ©) = {v e (L2@)? ; div ve L 2@}
provided with the norm

2 1
vl = divll?, +llawyll?, OF.
H(div;Q) L) L)

Note that (Hl(Q))z C H(div;Q). Let W = Hé(Q) x H(div;?) and define on
W the norm

1
2

2 2
(5) [wlly, = CHull%, +1lall )
H™ () H(div;Q)

where w = (u,0)

Choose finite dimensional spaces Vh(: Hé(Q) and ShC:H(div;Q) , and

define Wh = Vh X Sh. The mixed method we consider for the approximate

solution of (3) is: find W = (uh,gh)ewl,l such that

(6) B(w,W,) = jQ fu all w, €W
where
(7). B(w, W) = / Vu o, +0,Vu - g0 .

Q




We make the following standard approximability assumptions

(8) There is some ry Z 2 such that if uE:Iis(Q),
22g*s rl, then there is some vh.€ Vh such that
Hu_vhH k s C hs_kHuH s ’ k = 0,13
H (R) H™ ()

where C is independent of u and v

W
. > . t 2
9) There is some 1, =2 such that if O¢€ (B )",
2S¢ < Ty, then there is some ESh such that
~h
llo - p < c n'l|al| ,
h LZ(Q) (Ht(Q))z
laivig-gpll , ScnHigll o,
- L™ () (5 ()

where C is independent of 0 and Eh .

Let T denote the orthogonal projection of LZ(Q) onto Vh and

Ph denote the orthogonal projection of (LZ(Q))2 onto Sh .

Theorem 1. Suppose that the finite dimensional spaces Vh(: Hé(Q)
and S, C H(div;Q) satisfy (8), (9) along with
(10) lim || Va - PVu || -0 all u eV
h h'l 2 ’ ’
hao B L% () b 'h
(11) lim ||divo, - 7w _div 0| >0, all g €S
b 0 =h 'h h (Lz(m)z =h~ “h



Let (u,0) be the unique solution to (3) where felik(Q), k 2 0. Then
for h sulficiently small, (6) has the unique solution (uh,gh) and

2 2 1/2
(12) | u-u || + | |o-g ||
( *h ut () b H(div;Q)

<ol . o+ utL ol
S

i)
(H @)/
Proof. We show that if the spaces Vh and Sh satisfy (10) and

(11), then for h sufficiently small, there exists a constant O >0

such that for all Wy £ Wh

(13) sup B(w,,u) 2 allwlly Hw [, .

v_vh Ewh

By Babuska [1l, Theorem 2.2 ] (see also [2, Theorem 6.2.1, page 186]),
the fact that B(y,%) is symmetric and bounded, (i.e., there exists a

constant M independent of w and w such that
B(w,w) < M]|w||w||§l|w . all w,w € W,) ,
along with (13) are sufficient to insure that (6) has a unique solution.

Given W, = (uh,gh), we choose

-=2 - 1 _=—
u up ﬂh(dlvgh) . 9y o+ Ph(vuh)

h

Cleariy Qh = (Gh,éh) € Wh and there exists a constant C such that

|I‘z‘7hllw-<' C ||Yh{|w °




We obtain

~ - 2 . 2
sup  B(w, @) Z B(w,w) = ||g |7, +|laive |,
w, e W L7( L™
“h © “h
(14) + ]IVuhI]ZZ f div o (dlv 9 (d1v g )>
L7(Q)
- fQ Va, (Vu, =P, (Vu,))
Since for functions in Hé(Q),||VvII 9 is equivalent to the usual .
norm, we obtain
B(Wh,;lh) - T | [ -11’ le |V_’7hl lw(l_l |diV gh—ﬂh(div gh)l |L2(Q) | ]Vuh Ph(Vuh) I I (Q))
Za ' lwhl lwl I_hl |w
for h sufficiently small.
We may again use Babuska's theorem [1l, Theorem 2.2 ] to obtain the
error bound
1s) a1 g+ 190, gqios
LI P 2 M H(div;R)
< ) - . -
£ inf ||u vh|| 1 +  inf [Ig QhI]H(div;Q).
thVh ghesh

The bound (12) follows immediately from (15) by (8) and (9).
The problem (6) is equivaient to a system of linear algebraic equations.

Let ¢1,...,¢n be a basis for Vh and ?1""’?m be a basis for Sh' Then

103-_1)1 (}_() ’

It r~18

n
u, (x)= iZluicbi(:_c) . o) = )



1Q

and the vector of weights u = (uj) R = (Oj) are computed from

b

=
e}

o

(16)

where A is negative definite. Thus the system (16) is nonsingular if

and only if the m x n matrix M with entries

i=1,...,m,

=1,...,n,

is of full rank. This is a weaker condition than (10) and (11). It is
easy to see, however, that (10) is necessary in order to get convergent

approximations. Suppose the u in (10) is the finite element approxi-

h
mation from Vh to the solution u of
- Au = £ in O ,
u=290 on § ,

computed using the standard finite element method. The standard error
analysis shows that th converges to Vu = 0 as h > 0. Thus (10) is
a necessary condition for the mixed finite element approximation gh to
converge to J. A necessary condition for the satisfaction of (10) is
that dim Sh Z dim V(Vh), where V(Vh) is the space of all gradients of
elements of Vh'

The condition (11) was used in our proof of Theorem 1 to introduce
the term ||div ghlle into the right side of (14) as required in our

()

norm (5) for W. If we had used instead the weaker norm

an Ml = dlull2 + [1el1?, HF
W 1l @) L2




we would not have needed (11). We have included the term ]]div O]] 9
L7(R)
in our norm on W so that (in Theorem 2) we can use Nitsche's trick to

prove full accuracy in the L2 norm for both the approximations uy and
%, when the spaces Vh and Sh are the piecewise polynomials of the

same degree.

: +
Suppose 1 has a smooth boundary, f ¢ Hk(Q), k 2 1, and let V_ be

h
+
the same subspace as Vh except that elements of Vh are not required to
+
satisfy the boundary condition u =0 on 9. For subspaces Vh used in
practice one can smooth f = -div 0 (if necessarv) to obtain f and then
define an interpolant fI to f such that
e = I < A laotld
S ) Tovnpprjy .
2@ il ()
Let EO be the same as fI but with boundary nodes set to zero. Then
fg € Vh and it can be shown that
~ ~O < L
IlfI—fIH 2 _Chzllfll 1
L™ () H (R)

(A similar calculation is used to relate the change in solution due to a

change in domain in [10, pages 194-195].) Here we have used the fact [11,page

~

237} that f can be chosen to satisfy

€] | <cn g
12(Q) al @)

Thus

||div ¢ = m div o || +0
h LZ(Q)

as h =+ 0 so that (11) is necessary for div g, to converge to div g in



Other authors have also given conditions for the convergence of mixed
finite element methods. Oden and Lee [7] have essentially the same con-
dition as (10) for approximations in linear elasticity using a norm on W
equivalent to (17). They use Nitsche's trick with the assumption that

‘7ﬁh ESh to obtain optimal bounds in L2 for the finite element approxi-

mation wu Except for a remark similar to ours concerning the necessary

e
conditions for the system (16) to be nonsingular, they make no further

observations concerning the necessity of their condition., Oden and Reddy

in [8] give optimal bounds in L2 for both uy and Iy but give conditions

on the subspaces Vh and Sh which are very difficult to check.

Raviart and Thomas [9] also consider mixed methods for second order elliptic

~

equations. They seek approximations in the space W = LZ(Q) X H(div;Q)

with norm

el l- =l +1lgll? )
W LZ(Q) H (div;Q)

[V

where w = (u,0). They give sufficient conditions for existence and unique-
ness derived from Brezzi's results [3]. The finite elements they construct,
which satisfy their conditions, also trivially satisfy (11). The condition
(10) is not needed for their norm.

We now derive estimates in L2 for both upy and 9, Let e, = u - U,

eg =0-0,, and e = (eu,eg)-
Theorem 2. Assume the region (! is convex. Then
(18) et 5 = cnllell,
L7 ()
(19) el < cnllelly -
2 2@ =W




Proof.

be the solution to

The proof uses the idea of

Nitsche's trick [6]. Let

Vo = v in @
-div v = e in Q
- u
¢ =0 on 9§
Then
(eu,eu) = (eu,div v) = (—Veu,y—yh) + (eg,gh-VGh) ,
for all v, € Sh’ Gh £ Vh. Choose v, € Sh such that
Hv-vall , S enljwell | 5 cmlel]
L7() H™ () H™(2)
and Gh such that
= <
llvuh_v(bll 2 - Ch“¢ll 2
L7 (Q) H™ ()
Using
<
Hell 5 5 xlle]l,
H™ () L™ (%)
and the Schwartz inequality we obtain (18).
Now let ¥ be the solution of
=AYy = div e5 in @
Yy =0 on d §
so that Vy = e Then

(q),Y)



(e_,eg) = (eg,Vw-—th) , all wh > Vh .
Choose wh € Vh such that

| [vy-vy, || = chl|v]] S c'hfldiv e ||
h HZ(Q) g LZ(Q) R

from which (19) follows.

If the boundary of ) is curved, isoparametric elements can be used on
boundary triangles. It is straightforward to check that the orders of
accuracy presented here are not reduced when isoparametric elements are
used in boundary triangles similarly to the results of Ciarlet and Raviart
[4] and 2zlamal [11}, [12] for the standard finite element approximations
to second order elliptic problems. We note that since no more than one
partial derivative appears in any integrand, numerical integration is not

necessary to integrate the isoparametric elements.

-10-
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